$\frac{\text{Monotonicity Formula}:}{\text{Let } \Sigma^{k} \subset i\mathbb{R}^{n} \text{ be an (immersed) min. submanifeld.}}$ Fix $\mathbf{x}_{0} \in i\mathbb{R}^{n}$ (not nec. in Σ), consider $B_{r} := B_{r}(\mathbf{x}_{0}) = \frac{\text{open ball of }}{\text{radius } r > 0}$ Then, $\forall 0 < s < t < d(\mathbf{x}_{0}, \partial \Sigma)$, $\frac{|\Sigma \cap B_{t}|}{t^{k}} = \frac{|\Sigma \cap B_{s}|}{s^{k}} = \int \frac{|(\mathbf{x} - \mathbf{x}_{0})^{n}|^{2}}{|\mathbf{x} - \mathbf{x}_{0}|^{k+2}} \quad (\geqslant 0)$ $\Sigma \cap (B_{t} \setminus B_{s})$

Remark: The formula holds for "singular" min. submfd (currents or varifolds) and slightly "perturbed" in the Riemannian setting. Proof: (L. Simon "Lectures on GMT"; C.M. Ch.3) W.L.O.G. , take Xo = 0 . V cpt. supp. vector field X in iR" <u>Recall</u>: $S\Sigma(X) = \int div_{g} X = 0$ Idea: Choose X to be certain cutoff of radial vector field cutoff radial vec. field Take $X(x) := \overline{Y(r) x}$ where $r := |x| = dist^{R'(x,0)}$. - Σ Compute the divergence. 20 =0 $d_{iv} X = \sum_{i=1}^{n} \nabla_{e_i} X \cdot e_i$ $\left(\nabla^{R}r = \frac{x}{r}\right)$ $= k \mathcal{X}(r) + \mathcal{Y}(r) |\nabla^{T} r|^{2}$ $= 1 - |\nabla^{N}r|^2$

Integrate over S, by first variation formula, $O = \int div_{\Xi} X = k \int Y(r) + \int r Y'(r) - \int r Y'(r) |\nabla^{N} r|^{2}$ $\Sigma \qquad \Sigma \qquad \Sigma \qquad \Sigma \qquad \Sigma$ i.e. $k \int_{\Sigma} \gamma(r) + \int_{\Sigma} r \gamma'(r) = \int_{\Sigma} r \gamma'(r) |\nabla^{N}r|^{2} \cdots (1)$ Choose $V(r) = \mathcal{Y}(\frac{r}{p})$ where p > 0 is some "parameter" where $\gamma = \text{cutoff fcn} \qquad 1 \qquad \gamma(t)$ Note: $Y \equiv 1$ in $B_{P/2}$ and $Y \equiv 0$ outside B_P Note: $r \frac{d}{dr} \mathcal{F}(r) = - \frac{r}{d\rho} \frac{d}{d\rho} \left(\varphi(\frac{r}{\rho}) \right)$ by Chain Rule (1) becomes

 $k \int_{\Sigma} \varphi(\frac{r}{p}) - f \frac{d}{dp} \left(\int_{\Sigma} \varphi(\frac{r}{p}) \right) = -f \frac{d}{dp} \int_{\Sigma} \varphi(\frac{r}{p}) |\nabla^{\perp} r|^{2}$ Define $I(f) := \int_{\Sigma} \varphi(\frac{r}{p})$ We have $\frac{d}{dp} \left(f^{-k} I(f) \right) = f^{-k} I'(f) - k f^{-k-1} I(f)$ $= -f^{-k-1} \left[k I(p) - f I'(p) \right]$ "Let $\varphi(t) \rightarrow \chi_{[0,1]}$ " = $f^{-k} \frac{d}{dp} \left(\int_{\Sigma} \varphi(\frac{r}{p}) |\nabla^{\perp} r|^{2} \right)$ Then. $I(f) = |\Sigma \cap B_{f}|$ $\frac{d}{dp} \left(f^{-k} |\Sigma \cap B_{f}| \right) = f^{-k} \frac{d}{dp} \left(\int_{\Sigma \cap B_{f}} |\nabla^{\perp} r|^{2} \right) = \frac{(|\nabla^{\perp} r|^{2})}{(|\nabla^{\perp} r|^{2})}$

Key Idea: Work with "energy" instead of "are	а".
Denotl: $X_T := \{ u : D \rightarrow iR^3 \text{ satisfy (1), (2) in (}$	Douglas - Rado Thm }
For each u e XT = { parametrical disk w. bay T }	, define :
	Observation
$Area(u) := \int \int u_x ^2 u_y ^2 - \langle u_x, u_y \rangle^2 dxdy$	L diffeomorphism invariant
Energy (u) := $\frac{1}{2} \int \nabla u ^2 dx dy$	e conformally invenient
Let Ap := inf Area(4) R Ep := inf Energy uexp uexp	y(u).
Lemma : $A_T = E_T$.	
"Proof": We have the pointwise inequality:	対)
$\int u_{x} ^{2} (u_{y})^{2} - \langle u_{x}, u_{y} \rangle^{2} \leq u_{x} u_{y} \leq \frac{1}{2} (u_{x} ^{2} + u_{y})$	$\left \frac{1}{2} \right = \frac{1}{2} \left \nabla u \right ^2$
Integrate over D, we get Arca (u) < Energy (u)	Ane XL.
This implies AP & Ep.	
For Ap > Ep, we observe "=" holds in (#)	++
<ux, 4y=""> = 0 & 14x1 = 14y1</ux,>	
ie U is "conformal".	•
By the existence of (slobal) isothermal coord	inctes on (D, u [*] g ₁)
\Rightarrow Ar \geq Er.	0